2022
DOI: 10.30865/jurikom.v9i3.4177
|View full text |Cite
|
Sign up to set email alerts
|

Implementasi Convolutional Neural Network Untuk Klasifikasi Daging Menggunakan Fitur Ekstraksi Tekstur dan Arsitektur AlexNet

Abstract: The demand for meat began to increase rapidly, causing drastic price changes and causing the existence of scammers to inflate the price of meat to get big profits by mixing beef and pork. Few consumers are aware of the mixing of meat, to distinguish between beef and pork can be seen in terms of color and texture, but this theory still has weaknesses. This research uses the Deep Learning method, namely Convolutional Neural Network with Local Binary Pattern texture extraction feature and AlexNet architecture for… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3

Citation Types

0
1
0
3

Year Published

2023
2023
2023
2023

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(4 citation statements)
references
References 8 publications
0
1
0
3
Order By: Relevance
“…Similarly, research by Sarah, L. et al [16] employing CNN ResNet-50 produced average accuracy, recall, and precision values of 87.64%, 87.59%, and 90.90% [16]. Another study using CNN with AlexNet [17] resulted in an accuracy of 84.1%, precision of 78.6%, and recall of 79%. In addition, research by Alhafis G.Y et al [18] implemented CNN (EfficientNet-B0) with Contrast Limited Adaptive Histogram Equalization (CLAHE) obtained results of 95.17%, precision of 92.72% and recall of 95.5%.…”
mentioning
confidence: 83%
“…Similarly, research by Sarah, L. et al [16] employing CNN ResNet-50 produced average accuracy, recall, and precision values of 87.64%, 87.59%, and 90.90% [16]. Another study using CNN with AlexNet [17] resulted in an accuracy of 84.1%, precision of 78.6%, and recall of 79%. In addition, research by Alhafis G.Y et al [18] implemented CNN (EfficientNet-B0) with Contrast Limited Adaptive Histogram Equalization (CLAHE) obtained results of 95.17%, precision of 92.72% and recall of 95.5%.…”
mentioning
confidence: 83%
“…Terakhir, penelitian klasifikasi daging menggunakan fitur ekstraksi tekstur dan menggunakan arsitektur Alexnet. Penelitian ini berhasil mendapatkan akurasi tertinggi sebesar 85,3%, precision 87%, recall 76%, dan f1-score 81% [15].…”
Section: Pendahuluanunclassified
“…Penelitian ini melanjutkan [15] karena hasil pengunaan ekstraksi tekstur masih belum memberikan peningkatan akurasi. Pada penelitian ini digunakan teknik augmentasi data untuk memperbaiki performa dan meningkatkan akurasi penelitian [16].…”
Section: Pendahuluanunclassified
“…Penelitian sebelumnya oleh Gusrifaris Yuda Alhafis mengenai klasifikasi citra daging sapi dan daging babi menggunakan metode Contrast Limited Adaptive Histogram Equalization (CLAHE) dengan arsitektur EfficientNet-B0 menjadi dasar dari penelitian ini. Penggunaan metode CLAHE pada penelitian sebelumnya terbukti tidak memberikan peningkatan nilai akurasi yang diharapkan [21]. Oleh karena itu, dalam penelitian ini, penulis akan menggunakan augmentasi data dengan harapan dapat meningkatkan kinerja dan akurasi model [22].…”
Section: Pendahuluanunclassified