2019
DOI: 10.26418/elkha.v11i1.29959
|View full text |Cite
|
Sign up to set email alerts
|

Implementasi Kendali PID Menggunakan Jaringan Syaraf Tiruan Backpropagation

Abstract: Jaringan syaraf tiruan adalah salah satu representasi dari Artificial Intelligence yang dapat melatih suatu sistem menjadi cerdas. Pada penelitian ini, jaringan syaraf tiruan akan dilatih dengan metode Backpropagation untuk menggantikan pengendali konvensional, yaitu pengendali PID yang diimplementasikan dengan Matlab. Dataset pelatihan jaringan syaraf tiruan diambil dari input dan output pengendali PID pada sebuah sistem closed loop. Dengan setpoint dan plant yang sama, jaringan syaraf tiruan dapat memiliki u… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
4
0
1

Year Published

2021
2021
2023
2023

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(5 citation statements)
references
References 9 publications
0
4
0
1
Order By: Relevance
“…In the hidden layer and output layer, a calculation process occurs depending on the weight and bias of each neuron. The result calculates the output value of the hidden and output layers based on the activation function used [10]. In the hidden layer and output layer, a calculation process occurs depending on the weight and bias of each neuron.…”
Section: Backpropagation Neural Network Architecturementioning
confidence: 99%
“…In the hidden layer and output layer, a calculation process occurs depending on the weight and bias of each neuron. The result calculates the output value of the hidden and output layers based on the activation function used [10]. In the hidden layer and output layer, a calculation process occurs depending on the weight and bias of each neuron.…”
Section: Backpropagation Neural Network Architecturementioning
confidence: 99%
“…The creation of this demonstration tool has a positive impact on practical learning and also hydrokinetic energy for students in control engineering laboratories, as it facilitates the understanding of concepts related to water level control using a PID system. g) It is clear from the study [11] that the goal of this research is to substitute an artificial neural network trained using the Backpropagation method for conventional controllers (PID). The usage of artificial neural networks in the context of learning can benefit the learning of electronic control systems.…”
Section: Literature Reviewmentioning
confidence: 99%
“…JST banyak digunakan pada berbagai riset di berbagai bidang. Salah satunya dalam bidang pengendalian sistem [1]- [3]. JST dapat juga digunakan sebagai sebuah pendekatan dalam pengendalian sistem yang parameter-parameternya tidak diketahui atau sulit untuk ditentukan [4].…”
Section: Pendahuluanunclassified