2022
DOI: 10.24843/jlk.2022.v10.i04.p05
|View full text |Cite
|
Sign up to set email alerts
|

Implementasi LSTM Pada Analisis Sentimen Review Film Menggunakan Adam Dan RMSprop Optimizer

Abstract: Movies are an entertainment that is in great demand by many groups from children, teenagers, adults, and parents. In the current digital era, various films can be watched on television to digital streaming services. Public opinion on the films watched can be in the form of positive opinions or negative opinions. Sentiment analysis is one of the fields of Natural Language Processing (NLP) which is able to build a system to recognize and extract opinions in the form of text, sentiment analysis is usually used to… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
3
0
3

Year Published

2023
2023
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(6 citation statements)
references
References 0 publications
0
3
0
3
Order By: Relevance
“…1, the input text used is from the column of public opinions on Twitter. The process involves deleting null values, i.e., removing columns with null values to prevent issues during the model training and testing processes [10], performing case folding to convert text data into lowercase [1], cleaning text containing usernames, numbers, URLs, emojis, spaces, and other meaningless symbols [1] [11], separating sentences into individual words, known as tokenizing [1] [12]. Subsequently, stopword removal is carried out, which involves eliminating words based on a predefined stopword list.…”
Section: Data Transformation and Text-preprocessingmentioning
confidence: 99%
See 1 more Smart Citation
“…1, the input text used is from the column of public opinions on Twitter. The process involves deleting null values, i.e., removing columns with null values to prevent issues during the model training and testing processes [10], performing case folding to convert text data into lowercase [1], cleaning text containing usernames, numbers, URLs, emojis, spaces, and other meaningless symbols [1] [11], separating sentences into individual words, known as tokenizing [1] [12]. Subsequently, stopword removal is carried out, which involves eliminating words based on a predefined stopword list.…”
Section: Data Transformation and Text-preprocessingmentioning
confidence: 99%
“…The quality of service offered serves as a critical factor influencing patients' choices when selecting Puskesmas for their medical needs. However, there is a limited focus on evaluating the performance of Puskesmas services in existing studies [1]. With the continuous growth of the population, Community Health Centers are compelled to compete in delivering optimal care to patients, thereby enhancing the overall reputation of the center [2].…”
Section: Introductionmentioning
confidence: 99%
“…Word Embedding adalah sebuah metode yang digunakan untuk mengubah sequence kata menjadi vektor [5]. Pada penelitian ini, Word Embedding digunakan sebagai layer awal pada model, setiap judul berita yang berupa sequence 20 token diubah menjadi vektor berukuran 64 nilai [6].…”
Section: Word Embeddingunclassified
“…Epochs yang digunakan dalam penelitian ini yaitu 10, 15, 20, 30, dan 50. RMSprop merupakan metode optimasi yang menggunakan besarnya gradien terkini sehingga bermanfaat untuk menormalkan gradien, alasan fungsi ini disebut RMS karena mampu mempertahankan rata-rata bergerak di atas gradien root mean square [17]. Algoritma RMSProp berasal dari konsep penurunan gradien dan Resilient Back Propagation (RProp), yang berada di ranah tingkat pembelajaran adaptif dan dirancang untuk pelatihan Jaringan Syaraf Tiruan.…”
Section: Pelatihan Model Cnn Dan Validasi Model Cnnunclassified