This article quantifies the recycling potential of the metallic materials that make up three-phase induction motors. The data on the use of electric motors by type and power determines that the most significant recycling potential lies in this low-voltage motor which powers up to 75 kW. The work aims to show the possibility of such recycling in the European Union (EU). The metals used to make the various parts of the induction motor and the main recycling methods that allow their reuse are listed. It evaluates which part of the motor can apply these recycling methods relatively easily (stator) and which part is more complex (rotor). A calculation process is used to exhaustively quantify the metals that incorporate different motors selected for other powers to determine the amounts of material that can be recycled and reused to manufacture new equipment. The recycling potential is quantifies by parts (stator and rotor) employing approximate equations obtained from the study and by materials (copper, aluminum, magnetic sheet, steel). The data calculated, the economic volume, the possibilities of energy-saving, and the environmental advantages of dedicating efforts and resources for collecting, recycling, and reusing the materials in three-phase induction motors for industrial applications show. The withdrawal of electric motors in industrial applications, due to causes related to the restructuring of production processes, manufacturing systems, breakdowns, or directly due to aging, generates considerable possibilities of reusing the metals used in their manufacture.