2008
DOI: 10.1007/s00769-008-0475-6
|View full text |Cite
|
Sign up to set email alerts
|

Implementation in MATLAB of the adaptive Monte Carlo method for the evaluation of measurement uncertainties

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
16
0
2

Year Published

2009
2009
2024
2024

Publication Types

Select...
7
2

Relationship

0
9

Authors

Journals

citations
Cited by 49 publications
(18 citation statements)
references
References 9 publications
0
16
0
2
Order By: Relevance
“…the robustness of the method should be tested using a higher number of Monte Carlo trials. For a more rigorous analysis, such as the calculation of confidence intervals, the adaptive Monte Carlo method given by [33,35] may be implemented in future work. The method can also be used to study the influence of each uncertainty by itself, such as the temperature sensor accuracy, to determine which input quantity uncertainty should be decreased primarily.…”
Section: Discussionmentioning
confidence: 99%
“…the robustness of the method should be tested using a higher number of Monte Carlo trials. For a more rigorous analysis, such as the calculation of confidence intervals, the adaptive Monte Carlo method given by [33,35] may be implemented in future work. The method can also be used to study the influence of each uncertainty by itself, such as the temperature sensor accuracy, to determine which input quantity uncertainty should be decreased primarily.…”
Section: Discussionmentioning
confidence: 99%
“…El número de simulaciones dependerá del grado de tolerancia que se desee para el resultado final. Por regla general para unos intervalos del 95% de cobertura suelen ser necesarias unas 10 6 simulaciones [ 3,8].…”
Section: Concreto De Alta Resistenciaunclassified
“…Sin embargo la red neuronal no proporciona ninguna información sobre los intervalos de confianza o la incertidumbre del valor de salida [1]. Esta incertidumbre es importante no sólo porque es indicativa de la calidad de nuestro proceso de medida, sino porque a la vez nos proporciona un intervalo de confianza sobre nuestro resultado [2,3].…”
Section: Introductionunclassified
“…The simulations performed for this study incorporated in part a MATLAB code developed by the Group of Structural Integrity of the University of Burgos [18,19] for adaptive Monte Carlo simulations in accordance with the guidelines of ISO Guide 98-3/Supplement 1.…”
Section: Summary Of Monte Carlo Simulationsmentioning
confidence: 99%