The Network on Chip is appropriate where System-on-Chip technology is scalable and adaptable. The Network on Chip is a new communication architecture with a number of benefits, including scalability, flexibility, and reusability, for applications built on Multiprocessor System on a Chip (MPSoC). However, the design of efficient NoC fabric with high performance is critically complex because of its architectural parameters. Identifying a suitable scheduling algorithm to resolve arbitration among ports to obtain high-speed data transfer in the router is one of the most significant phases while designing a Network on chip based Multiprocessor System on a Chip. Low latency, throughput, space utilization, energy consumption, and reliability for Network on chip fabric are all determined by the router. The performance of the NoC system is hampered by the deadlock issues that plague conventional routing algorithms. This work develops a novel routing algorithm to address the deadlock problem. In this paper, a deterministic shortest path deadlock-free routing method is developed based on the analysis of the Turn Model. In the 2D-mesh structure, the algorithm uses separate routing methods for the odd and even columns. This minimizes the number of paths for a single channel, congestion, and latency. Two test scenarios—one with and one without a load test—were used to evaluate the proposed model. For a zero-load network, three clock cycles are utilized to transfer the packets. For the load network, five clocks are utilized to transfer the packets. The latency is measured for both cases without load and with load test and the corresponding latency is 3ns and 7ns respectively.The proposed method has an 18.57Mbps throughput. The area and power utilization for the proposed method are 69% (IO utilization) and 0.128W respectively. In order to validate the proposed method, the latency is compared with existing work and 50% latency is reduced both with and without congestion load.