In Switzerland and other high-income countries, one out of 3000 to 5000 term and late preterm neonates develops early onset sepsis (EOS) associated with a mortality of around 3%, while incidence and mortality of EOS in very preterm infants are substantially higher. Exposure to antibiotics for suspected EOS is disproportionally high compared to the incidence of EOS with consequences for future health and antimicrobial resistance (AMR). A safe reduction of unnecessary antibiotic treatment has to be a major goal of new management strategies and guidelines.
Antibiotics should be administered immediately in situations with clinical signs of septic shock. Group B streptococcus (GBS) and Escherichia coli (E. coli) are the leading pathogens of EOS. Amoxicillin combined with an aminoglycoside remains the first choice for empirical treatment.
Serial physical examinations are recommended for all neonates with risk factors for EOS. Neonates without any clinical signs suggestive of EOS should not be treated with antibiotics. In Switzerland, we do not recommend the use of the EOS calculator, a risk stratification tool, due to its unclear impact in a population with an observed antibiotic exposure below 3%.
Not all neonates with respiratory distress should be empirically treated with antibiotics. Isolated tachypnea or respiratory distress starting immediately after delivery by elective caesarean section or a clearly assessed alternative explanation than EOS for clinical signs may point towards a low probability of sepsis. On the other hand, unexplained prematurity with risk factors has an inherent higher risk of EOS.
Before the start of antibiotic therapy, blood cultures should be drawn with a minimum volume of 1 ml in a single aerobic blood culture bottle. This standard procedure allows antibiotics to be stopped after 24 to 36 h if no pathogen is detected in blood cultures. Current data do not support the use of PCR-based pathogen detection in blood as a standard method. Lumbar puncture is recommended in blood culture–proven EOS, critical illness, or in the presence of neurological symptoms such as seizures or altered consciousness.
The accuracy of a single biomarker measurement to distinguish inflammation from infection is low in neonates. Therefore, biomarker guidance is not a standard part of decision-making regarding the start or stop of antibiotic therapy but may be used as part of an algorithm and after appropriate education of health care teams.
Every newborn started on antibiotics should be assessed for organ dysfunction with prompt initiation of respiratory and hemodynamic support if needed. An elevated lactate may be a sign of poor perfusion and requires a comprehensive assessment of the clinical condition. Interventions to restore perfusion include fluid boli with crystalloids and catecholamines. Neonates in critical condition should be cared for in a specialized unit.
In situations with a low probability of EOS, antibiotics should be stopped as early as possible within the first 24 h after the start of therapy. In cases with microbiologically proven EOS, reassessment and streamlining of antibiotic therapy in neonates is an important step to minimize AMR.
Conclusion: This guideline, developed through a critical review of the literature, facilitates a probability-based approach to the management of neonates at risk of early onset sepsis.
What is Known:• Neonatal exposure to antibiotics is disproportionally high compared with the incidence of early onset sepsis with implications for future health and antimicrobial resistance.
What is New:• A probability-based approach may facilitate a more balanced management of neonatal sepsis and antibiotic stewardship.