Frame structures are widely used in engineering practice. They are likely to lose their stability before damage. As an indicator of load-carrying capability, the first critical load plays a crucial role in the design of such structures. In this paper, a new method of identifying this critical load is presented, based on the governing equations in rate form. With the presented method, a great deal of well-developed numerical methods for ordinary differential equations can be used. As accurate structural tangent stiffness matrices are essential to stability analysis, the method to obtain them systematically is discussed. To improve the computational efficiency of nonlinear stability analysis in large-scale frame structures, the corotational substructure elements are formulated as well to reduce the dimension of the governing equations. Four examples are studied to illustrate the validity and efficiency of the presented method.