A number of codes are used to predict various aspects of nuclear fuel performance and safety, ranging from conventional fuel performance codes to simulate normal operating conditions to integral engineering codes to simulate severe accident behaviour. There has been a number of reportings in the open literature of nuclear fuel codes being informed by thermodynamic calculations, ranging from the use of simple thermodynamic correlations to direct coupling of equilibrium thermodynamic software. Progress in expanding predictive capabilities have been reported, which also includes advances in thermodynamic database development to better capture irradiated fuel. However, this progress has been accompanied by several challenges, including effective coupling of different types of physical phenomena in a practical manner and doing so with a reasonable increase in computational expense. This review paper will summarize previous experiences reported in the open literature in coupling thermodynamic calculations with nuclear fuel codes and applications, identify current challenges and limitations, and offer some perspectives for the community to consider moving forward.