A smart control based on neural networks for multicellular converters has been developed and implemented. The approach is based on a behavioral description of the different converter operating modes. Each operating mode represents a well-defined configuration for which an operating zone satisfying given invariance conditions, depending on the capacitors' voltages and the load current of the converter, is assigned. A control vector, whose components are the control signals to be applied to the converter switches is generated for each mode. Therefore, generating the control signals becomes a classification task of the different operating zones. For this purpose, a neural approach has been developed and implemented to control a 2-cell converter then extended to a 3-cell converter. The developed approach has been compared to super-twisting sliding mode algorithm. The obtained results demonstrate the approach effectiveness to provide an efficient and robust control of the load current and ensure the balancing of the capacitors voltages.