Abstract:This paper presents the development of a multiple-station neural network for predicting tidal currents across a coastal inlet. Unlike traditional hydrodynamic models, the neural network model does not need inputs of coastal topography and bathymetry, grids, surface and bottom frictions, and turbulent eddy viscosity. Without solving hydrodynamic equations, the neural network model applies an interconnected neural network to correlate the inputs of boundary forcing of water levels at a remote station to the outputs of tidal currents at multiple stations across a local coastal inlet. Coefficients in the neural network model are trained using a continuous dataset consisting of inputs of water levels at a remote station and outputs of tidal currents at the inlet, and verified using another independent input and output dataset. Once the neural network model has been satisfactorily trained and verified, it can be used to predict tidal currents at a coastal inlet from the inputs of water levels at a remote station. For the case study at Shinnecock Inlet in the southern shore of New York, tidal currents at nine stations across the inlet were predicted by the neural network model using water level data located from a station about 70 km away from the inlet. A continuous dataset in May 2000 was used for the training, and another dataset in July 2000 was used for the verification of the neural network model. Comparing model predictions and observations indicates correlation coefficients range from 0Ð95 to 0Ð98, and the root-mean-square error ranges from 0Ð04 to 0Ð08 m s 1 at the nine current locations across the inlet.