La Realidad Aumentada (RA) consiste en la creación de un entorno en el que la información y los objetos virtuales se fusionan con la realidad, ofreciendo al usuario una experiencia enriquecida sin interferir con su percepción natural. Esta tesis se centra en la integración de dos tipos particulares de aumentación de la realidad: la basada en imágenes arbitrarias y la basada en rostros humanos, e incluyendo en esta última el reconocimiento facial de individuos y la estimación de parámetros biométricos. Se persigue por una parte la escalabilidad, en el sentido de no tener una limitación en la cantidad de objetivos de aumentación (imágenes o rostros) almacenados en una base de datos, y por otra parte, la independencia de servicios externos en línea a la hora de la explotación. Se propone utilizar descriptores de rostros con ciertas similitudes morfológicas a otros populares descriptores de imágenes. Esta similitud permite tratarlos como un mismo problema. Dado que el cuello de botella identificado en el proceso de RA es la búsqueda de correspondencias, es decir la búsqueda de una imagen o rostro en la base de datos, se propone obtener escalabilidad mediante el uso de algoritmos avanzados de búsqueda aproximada de vecinos más cercanos o ANN. Se realizan estudios cuantitativos de desempeño de diversas implementaciones de algoritmos ANN utilizando un nuevo esquema de evaluación. Como resultado se establece a HNSW como el algoritmo más apropiado para la tarea. Se consigue diseñar, implementar y evaluar una arquitectura integrada y escalable de RA basada en imágenes y reconocimiento de rostros con inferencia biométrica, basada en procesamiento paralelo y asíncrono.