2018
DOI: 10.1088/1757-899x/288/1/012126
|View full text |Cite
|
Sign up to set email alerts
|

Implementation of Automatic Clustering Algorithm and Fuzzy Time Series in Motorcycle Sales Forecasting

Abstract: Abstract. Accurate forecasting for the sale of a product depends on the forecasting method used. The purpose of this research is to build motorcycle sales forecasting application using Fuzzy Time Series method combined with interval determination using automatic clustering algorithm. Forecasting is done using the sales data of motorcycle sales in the last ten years. Then the error rate of forecasting is measured using Means Percentage Error (MPE) and Means Absolute Percentage Error (MAPE). The results of forec… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0
1

Year Published

2018
2018
2024
2024

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(5 citation statements)
references
References 5 publications
0
4
0
1
Order By: Relevance
“…Time series algorithms are commonly used for forecasting sales volume, primarily relying on the seasonal fluctuations of sales volume (ramosal et al, 2022). To improve the accuracy of forecasting, time series algorithms can be combined with other algorithms (Rasim et al, 2018). The growing popularity of e-commerce has enabled the use of computer technology for sales volume forecasting, although it is essential to consider multiple influencing factors.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Time series algorithms are commonly used for forecasting sales volume, primarily relying on the seasonal fluctuations of sales volume (ramosal et al, 2022). To improve the accuracy of forecasting, time series algorithms can be combined with other algorithms (Rasim et al, 2018). The growing popularity of e-commerce has enabled the use of computer technology for sales volume forecasting, although it is essential to consider multiple influencing factors.…”
Section: Literature Reviewmentioning
confidence: 99%
“…The historical datasets typically exhibit irregular variations due to a myriad of real-world factors such as natural disasters, seasonal fluctuations, adaptations in marketing strategies, random influences, and unforeseen contingencies. Large-scale sales datasets in real-world scenarios possess a complexity characterized by nonlinearity, diversity, persistence, and noise [19]. These datasets often contain significant gaps with missing attribute values or are limited to aggregated data.…”
Section: Related Workmentioning
confidence: 99%
“…Pada penelitian lain tahun 2020, metode rough set juga digunakan untuk melakukan prediksi penjualan perumahan, dimana atribut yang digunakan adalah pekerjaan, tipe rumah, kemampuan ekonomi dan bentuk pembayaran, sehingga menghasilkan 5 reduct dan 11 rules [14]. Pada tahun 2018, penelitian tentang peramalan penjualan sepeda motor pernah dilakukan dengan metode clustering dan Fuzzy Time Series, penelitian ini menggunakan data penjualan sepda motor Suzuki selama 10 tahun dari tahun 2005 sampai 2014 dengan hasil penelitian menunjukkan nilai rata-rata MPE sebesar 0,19% dan MAPE sebesar 2,15% termasuk dalam akurasi yang baik [15]. Penelitian sebelumnya tentang peramalan panjualan sepeda motor pada tahun 2020, peramalan penjualan sepeda motor dengan merek Yamaha di Sentral Yamaha Malang menggunakan data 3 tahun penjualan.…”
Section: Pendahuluanunclassified