Environmentally sustainable metropolitan environments are characterized by their ability to effectively produce and distribute power while reducing their impact on the environment. Smart homes are essential in smart cities since they enhance sustainability and efficiency in urban settings. A key advantage of smart homes is their capacity to diminish energy use and carbon emissions. This is accomplished by optimizing energy consumption in home appliances, which is customized to fulfill the individual requirements and preferences of consumers. However, there is still a need for further academic research to investigate and improve the functioning of intelligent residential homes in microgrids. To efficiently manage microgrids, it is crucial to gather and analyze large amounts of electrical data related to power production from microgrid sources and energy consumption of the loads. This study examines the use of Non-Intrusive Load Monitoring (NILM) methods to monitor electrical parameters of different loads in microgrids. The research focuses on the application of affordable smart meters that are equipped with Internet of Things (IoT) capabilities. An empirical study showcases the possibility of collecting significant data on microgrid operation via the deployment of an operational microgrid that integrates a hybrid wind-solar power source with a variety of home appliances.