2021
DOI: 10.1051/itmconf/20214003032
|View full text |Cite
|
Sign up to set email alerts
|

Implementation of Deep Learning Based Sentiment Classification and Product Aspect Analysis

Abstract: With the increase in E-Commerce businesses in the last decade,the sentiment analysis of product reviews has gained a lot of attention in linguistic research. In literature, the survey depicts the majority of the research done emphasizes on mere polarity identification of the reviews. The proposed system emphasized on classifying the sentiment polarity and the product aspect identification from the reviews. Proposed work experimented with traditional machine learning techniques as well as deep neural networks s… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
1
0
2

Year Published

2023
2023
2024
2024

Publication Types

Select...
2
2
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(3 citation statements)
references
References 15 publications
0
1
0
2
Order By: Relevance
“…Sebuah penelitian menggunakan perbandingan tiga arsitektur deep learning yaitu CNN, RNN, dan LSTM akurasi terbaik menunjukan model LSTM sebesar 93% [7]. ABSA pada domain ulasan data restoran berbahasa Indonesia dengan kombinasi metode BERT-CNN, ELMo-CNN, dan Word2vec-CNN hasil terbaik ditunjukan pada model ELMo-CNN dengan nilai micro-average precision sebesar 0.88%, micro average recall sebesar 84%, dan fl-score sebesar 0.86% untuk klasifikasi sentimen memberikan hasil terbaik pada BERT-CNN dengan nilai precision sebesar 0.89%, recall sebesar 0.86 dan f1-score sebesar 0.91 [8].…”
Section: Pendahuluanunclassified
See 1 more Smart Citation
“…Sebuah penelitian menggunakan perbandingan tiga arsitektur deep learning yaitu CNN, RNN, dan LSTM akurasi terbaik menunjukan model LSTM sebesar 93% [7]. ABSA pada domain ulasan data restoran berbahasa Indonesia dengan kombinasi metode BERT-CNN, ELMo-CNN, dan Word2vec-CNN hasil terbaik ditunjukan pada model ELMo-CNN dengan nilai micro-average precision sebesar 0.88%, micro average recall sebesar 84%, dan fl-score sebesar 0.86% untuk klasifikasi sentimen memberikan hasil terbaik pada BERT-CNN dengan nilai precision sebesar 0.89%, recall sebesar 0.86 dan f1-score sebesar 0.91 [8].…”
Section: Pendahuluanunclassified
“…CNN sendiri sangat umum digunakan pada data image. Meskipun CNN telah banyak diaplikasikan pada image classification, CNN juga mampu mengatasi pada permasalahan data teks [7]. CNN terdiri dari beberapa layer, layer pertama menyimpan kata dalam sebuah low-dimensional vector, layer kedua menjalankan convolutions menggunakan multiple filter size, selanjutnya max-pool hasil dari layer convolutional ke dalam long feature vector, menambahkan fully connected dropout regularization, dan mengklasifikasi hasil menggunakan ReLu layer [21].…”
Section: Convolutional Neural Network (Cnn)unclassified
“…The results obtained demonstrated that the suggested model boosted the accuracy of ABSA systems by around 5 to 20%. The researchers in [76], suggested a system in which they classified the polarity of sentiments and also identified the aspects of products from the reviews given by customers. In their work, they analyzed the performance of standard ML techniques along with the DL methods including CNN, RNN and LSTM.…”
Section: International Journal On Recent and Innovation Trends In Com...mentioning
confidence: 99%