Quantum computation based on nonadiabatic geometric phases has attracted a broad range of interests, due to its fast manipulation and inherent noise resistance. However, it is limited to some special evolution paths, and the gate-times are typically longer than conventional dynamical gates, resulting in weakening of robustness and more infidelities of the implemented geometric gates. Here, we propose a path-optimized scheme for geometric quantum computation (GQC) on superconducting transmon qubits, where high-fidelity and robust universal nonadiabatic geometric gates can be implemented, based on conventional experimental setups. Specifically, we find that, by selecting appropriate evolution paths, the constructed geometric gates can be superior to their corresponding dynamical ones under different local errors. Numerical simulations show that the fidelities for single-qubit geometric phase, π/8 and Hadamard gates can be obtained as 99.93%, 99.95% and 99.95%, respectively. Remarkably, the fidelity for two-qubit control-phase gate can be as high as 99.87%. Therefore, our scheme provides a new perspective for GQC, making it more promising in the application of large-scale fault-tolerant quantum computation.