A brief critique is presented of some different classes of magnetohydrodynamic equilibrium solutions based on their continuity properties and whether the magnetic field is integrable or not. A generalized energy functional is introduced that is comprised of alternating ideal regions, with nested flux surfaces with an irrational rotational transform, and Taylor-relaxed regions, possibly with magnetic islands and chaos. The equilibrium states have globally continuous magnetic fields, and may be constructed for arbitrary three-dimensional plasma boundaries and appropriately prescribed pressure and rotational-transform profiles.