In this paper, a practical discrete-time control method with adaptive image feature prediction for the image-based visual servoing (IBVS) scheme is presented. In the discrete-time IBVS inner-loop/outer-loop control architecture, the time delay caused by image capture and computation is noticed. Considering the dynamic characteristics of a 6-DOF manipulator velocity input system, we propose a linear dynamic model to describe the motion of a robot end effector. Furthermore, for better estimation of image features and smoothing of the robot’s velocity input, we propose an adaptive image feature prediction method that employs past image feature data and real robot velocity data to adopt the prediction parameters. The experimental results on a 6-DOF robotic arm demonstrate that the proposed method can ensure system stability and accelerate system convergence.