The fluctuating nature of solar energy necessitates suitable energy storage systems. Compared to typical battery banks, supercapacitors offer longer cycle life eliminating the need to replace them regularly. However, compared to a typical maximum power point tracking controller, where the battery bank and resistive load fed by a switch-mode DC-DC converter allows impedance matching for maximum power transfer, a supercapacitor bank's significantly large capacitive load does not permit the typical impedance matching for maximum power transfer. This study compares the theoretical difference between battery versus supercapacitor energy storage, and highlights of the supercapacitor-assisted LED converter technique in achieving high-efficiency renewable energy-based DC-microgrid systems. (a) PV current versus voltage characteristics with directly coupled operating point, (b) Current-voltage variations with irradiance, (c) Power versus voltage curve