Im Rahmen dieser Arbeit wurde ein verbessertes Buncher-System für Hochfrequenzbeschleuniger mit niedrigem und mittlerem Ionenstrom entwickelt. Die entwickelte Methodik hat ermöglicht, ein effektives, vereinfachtes Buncher-System für die Injektion in HF-Beschleuniger wie RFQs, Zyklotrons, DTLs usw. zu entwerfen, welches kleine Ausgangsemittanzen und beträchtliche Strahltransmissionen erzielt. Um einen mono-energetischen und kontinuierlichen Strahl aus einer Ionenquelle für den Einschuss in eine Hochfrequenz-Beschleunigerstruktur anzupassen, wird eine Energiemodulation benötigt, die im weiteren Verlauf (Driftstrecke) zur Längsfokussierung des Strahls führt. Durch eine Sägezahnwellenform wird die ideale Energiemodulation aufgrund der linearen Abhängigkeit zwischen der Energie der Teilchen und ihren relativen Phasen erreicht. Dies ist jedoch technologisch nicht möglich, da Teilchenbeschleuniger Spannungsniveaus im Bereich kV bis 100 kV benötigen. Dagegen ist für eine solche Zielsetzung eine räumliche Trennung der sinusförmigen Anregung mit der Grundfrequenz und höheren Harmonischen möglich. Daher wurde in dieser Arbeit ein verbesserter harmonischer Buncher, der sogenannte „Double Drift Harmonic Buncher - DDHB“ entwickelt, welcher zahlreiche Vorteile hat. Eine geringe longitudinale Emittanz sowie finanzielle Aspekte sprechen für diesen Lösungsansatz. Die Hauptelemente eines DDHB Systems sind zwei Kavitäten, die durch eine Driftlänge L1 getrennt sind, wobei der erste Resonator mit der Grundfrequenz bei -90° synchroner Phase und angelegter Spannung V1 und der zweite Resonator bei der zweiten harmonischen Frequenz mit +90 synchroner Phase und angelegter Spannung V2 betrieben werden. Schließlich ist eine zweite Drift L2 am Ende des Arrays für eine longitudinale Strahlfokussierung am Hauptbeschleunigereingang erforderlich. Somit erfüllt ein solcher Aufbau das angestrebte Ziel einer hohen Einfangseffizienz und einer kleinen longitudinalen Emittanz durch Anpassen der vier Designparameter V1, L1, V2 und L2. Das Verständnis der Fokussierung, ausgehend von einem Gleichstromstrahl, einschließlich der Raumladungskräfte, ist einer der wesentlichen Bestandteile der Strahlphysik. Viele kommerzielle Codes bieten Simulationsmöglichkeiten in diesem Anwendungsbereich. Ihre Ansätze bleiben jedoch dem Anwender meist verborgen, oder es fehlen wichtige Details zur genauen Abbildung des vorliegenden Konzepts. Daher bestand eine Hauptaufgabe dieser Arbeit darin, einen speziellen Multi-Particle-Tracking-Beam-Dynamics-Code (BCDC) zu entwickeln, bei dem der Raumladungseffekt während des Bunch-Vorgangs, ausgehend von einem DC-Strahl berechnet wird. Der BCDC - Code enthält elementare Routinen wie Drift und Beschleunigungsspalt oder magnetische Linse für die transversale Strahlfokussierung und Raumladungsberechnungen unter Berücksichtigung der Auswirkungen der nächsten Nachbar-Bunche (NNB). Der Raumladungsalgorithmus in BCDC basiert auf einer direkten Coulomb- Gitter-Gitter-Wechselwirkung und Berechnungen des elektrischen Feldes durch Lokalisierung der Ladungsdichte auf einem kartesischen Gitter. Um Genauigkeit zu erreichen, werden die Feldberechnungen in Längsrichtung symmetrisch um das zentrale Bucket (βλ-Größe) erweitert, so dass das Simulationsfeld dreimal so groß ist. Die zentrale Teilchenverteilung wird dann nach jedem Schritt in die benachbarten Buckets kopiert. Anschließend werden die resultierenden Felder im Hauptgitterfeld neu berechnet, indem die elektrischen Felder im Hauptgitterfeld mit denen aus den benachbarten Regionen überlagert werden. Ohne diese Methode würde z. B. ein kontinuierlicher Strahl, welcher jedoch in der Simulation nur innerhalb einer Zelle der Länge βλ definiert ist, zu einer resultierenden Raumladungsfeldkomponente Ez an beiden Rändern der Zelle führen. Ein solches unphysikalisches Ergebnis konnte durch die Anwendung der NNB-Technik bereits weitgehend eliminiert werden. Zusätzlich zum NNB-Feature verfügt das BCDC über eine weitere Besonderheit nämlich die sogenannte Raumladungskompensation (SCC). Aufgrund der Ionisierung des Restgases kommt es entlang des Niederenergiestrahltransports zu einer teilweisen Raumladungskompensation, und zwar am und hinter dem Bunchersystem mit unterschiedlichen Prozentsätzen. Eines der Hauptziele des DDHB-Konzepts besteht darin, es für Hochstromstrahlanwendungen zu entwickeln. Dabei ermöglicht die teilweise Raumladungskompensation, dass das Design in der Praxis höhere Stromniveaus erreicht. Dadurch ist das BCDC-Programm ein leistungsstarkes Werkzeug für Simulationen in künftigen, stromstarken Projekten. Proof-of-Principle-Designs wurden in dieser Arbeit entwickelt.