Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The 2014 Wood Review is a report reviewing UK offshore oil and gas recovery and its regulation, led by Sir Ian Wood. The report identifies and addresses key challenges in the UK petroleum industry, among them the lack of a strong regulatory body and a decommissioning strategy. The UK petroleum industry is mature, and Norway may benefit from UK's experiences in decommissioning. The article investigates the applicability of the Wood Review recommendations for decommissioning in Norway. The analysis of the recommendations in the Wood Review is carried out by a SWOT-analysis of the general recommendations with a high potential impact on decommissioning as well as the five recommendations specific to decommissioning. The recommendations in the Wood Review were broadly accepted by UK authorities and formed the basis for numerous initiatives aimed at improving policies and practices in UK decommissioning. The key initiatives are presented to illustrate how the Wood Review recommendations has been interpreted. A summary of the key differences between the petroleum industries and the regulatory authorities in Norway and the UK is provided for background. Decommissioning in Norway face similar challenges to those identified in the Wood Review. The analysis indicates that several of the UK initiatives following the recommendations in the Wood Review has the potential of improving decommissioning in Norway. Differences in regulatory regimes between the regions may complicate the implementation of some of the initiatives following the Wood Review in Norway. In most cases only minor changes to regulations and/or practices are required. Recent UK initiatives with a high impact on decommissioning include increased focus on sharing of information and lessons learned, increased collaboration, the development of a decommissioning strategy, benchmarking of decommissioning cost estimates for all projects and the development and publishing of annual UK decommissioning cost estimates. There are indications that the Norwegian Petroleum Directorate (NPD) and the Norwegian Ministry of Petroleum and Energy (MPE) are falling behind their UK counterparts in key areas. Norway has limited experience with decommissioning, and scrupulous analysis of lessons learned in other regions is essential. Decommissioning of Norwegian offshore infrastructure is a major undertaking and even minor improvements may have a substantial impact on personnel risk, risk to the environment or the total decommissioning expenditure. The Norwegian regulatory regime has been an integral part of the Norwegian petroleum industry's success in previous decades, and changes to the regime require careful deliberation. The recent implementation of initiatives aimed at improving decommissioning regulations and practices in the UK represents a unique learning opportunity for Norwegian authorities. The analysis suggest that Norway may benefit from adopting some of the UK initiatives following the Wood Review recommendations.
The 2014 Wood Review is a report reviewing UK offshore oil and gas recovery and its regulation, led by Sir Ian Wood. The report identifies and addresses key challenges in the UK petroleum industry, among them the lack of a strong regulatory body and a decommissioning strategy. The UK petroleum industry is mature, and Norway may benefit from UK's experiences in decommissioning. The article investigates the applicability of the Wood Review recommendations for decommissioning in Norway. The analysis of the recommendations in the Wood Review is carried out by a SWOT-analysis of the general recommendations with a high potential impact on decommissioning as well as the five recommendations specific to decommissioning. The recommendations in the Wood Review were broadly accepted by UK authorities and formed the basis for numerous initiatives aimed at improving policies and practices in UK decommissioning. The key initiatives are presented to illustrate how the Wood Review recommendations has been interpreted. A summary of the key differences between the petroleum industries and the regulatory authorities in Norway and the UK is provided for background. Decommissioning in Norway face similar challenges to those identified in the Wood Review. The analysis indicates that several of the UK initiatives following the recommendations in the Wood Review has the potential of improving decommissioning in Norway. Differences in regulatory regimes between the regions may complicate the implementation of some of the initiatives following the Wood Review in Norway. In most cases only minor changes to regulations and/or practices are required. Recent UK initiatives with a high impact on decommissioning include increased focus on sharing of information and lessons learned, increased collaboration, the development of a decommissioning strategy, benchmarking of decommissioning cost estimates for all projects and the development and publishing of annual UK decommissioning cost estimates. There are indications that the Norwegian Petroleum Directorate (NPD) and the Norwegian Ministry of Petroleum and Energy (MPE) are falling behind their UK counterparts in key areas. Norway has limited experience with decommissioning, and scrupulous analysis of lessons learned in other regions is essential. Decommissioning of Norwegian offshore infrastructure is a major undertaking and even minor improvements may have a substantial impact on personnel risk, risk to the environment or the total decommissioning expenditure. The Norwegian regulatory regime has been an integral part of the Norwegian petroleum industry's success in previous decades, and changes to the regime require careful deliberation. The recent implementation of initiatives aimed at improving decommissioning regulations and practices in the UK represents a unique learning opportunity for Norwegian authorities. The analysis suggest that Norway may benefit from adopting some of the UK initiatives following the Wood Review recommendations.
Summary It is well-known that formations that exhibit active creep behavior under downhole conditions, such as reactive shales and mobile salts, can form annular barriers across uncemented or poorly cemented annular sections behind casing strings. Such creep barriers can simplify well abandonments, particularly in high-cost offshore environments. Evaluation and qualification of creep barriers in the field, however, have proven challenging and labor-intensive when casing is perforated, and annular rock material is pressure-tested to verify its sealing ability. This work seeks to eliminate the need for pressure testing by allowing the barrier to be qualified using only casedhole log measurements. Sophisticated rock mechanical laboratory experiments under realistic downhole conditions were conducted to investigate the formation of creep barriers by North Sea Lark shale. The experiments evaluated barrier formation while varying annular fluid chemistry and temperature. Measurement parameters included creep rate, pressure transmission across newly formed barriers, pressure breakthrough through the newly formed barriers as well as ultrasonic responses by the shale. It was found that the Lark/Horda shale has a distinct anisotropic ultrasonic wave velocity profile that uniquely characterizes it. This can be used to identify its presence in an annular space when contacting the casing. A main conclusion is that a Lark shale barrier can be qualified through casedhole sonic and ultrasonic logging alone without the need for pressure testing if (1) the magnitude of the wave propagation velocity of the shale behind casing can be confirmed (2077 m/s for Lark shale); (2) the characteristic velocity anisotropy profile, unique to the shale (~10.1% for Lark shale), can be verified; (3) good contact with/bonding to the casing is observed; and optionally (4) anisotropy in the time behavior of the shale contacting the pipe is observed when the barrier is stimulated artificially. If these conditions are met, then our experiments show that the barrier will have excellent hydraulic sealing ability, with a permeability of a few microdarcies at most and a breakthrough pressure that approaches the minimum horizontal effective stress value. Additional findings are that shale heating will accelerate barrier formation but may damage the shale formation in the process. Extraordinary fast annular closure and barrier formation with evident shale rehealing was observed by using a concentrated KCl solution as pore fluid, showing the merits of barrier stimulation by chemical means. This result can be explained by considering the effect of solutes on shale hydration forces.
Verification of annular well barrier elements is an essential process during the well construction and plug and abandonment phases. This topic has been the subject of many publications and is governed by regulations in different countries around the world. In this paper we focus on the evaluation of shale creep barriers. We describe how sonic and ultrasonic pulse-echo and pitch-catch configuration data are used to monitor the evolution of formations creep around the casing to eventually form annular barriers. Multiple annulus logging evaluations were performed across wells from the Valhall, Ula, Alvheim, and Jette fields on the Norwegian Continental Shelf (NCS). This was done using ultrasonic pulse-echo and pitch-catch configuration data as well as traditional sonic logs. The logging data were collected, reprocessed, and compared as part of a collaborative effort between the operator and a service company. In this study we examine the progression of annular solids through time from formation creep. Our intention was to study the ability of shales creep to form barriers, and to simplify the well design and achieve isolation around the production casing without the need for conventional cementing operations. The log data provide information of annulus material with a detailed map of the axial and azimuthal variations of the annulus contents. Crossplotting state-of-the-art measurements also helps to identify the material accumulating in the annulus as published in many other industry papers. This approach has garnered interest over the years as a novel solution during well abandonment operations. The results provide solid evidence of shale creep-forming barriers and has been used by the operator to further refine their zonal isolation strategy. Comparing ultrasonic data with a particular interest on the progression of formation creep, has become a popular subject within the NCS. Innovative use of historical logging data holds a great potential to help make decisions that result in reduced cost and environmental impact. Because of this novel usage and analysis of ultrasonic logging data, the operator was able to make informed decisions faster, saving rig time and cost while reducing the carbon footprint.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.