We discuss the hints for the disappearance of continuum space and time at microscopic scale. These include arguments for a discrete nature of them or for a fundamental non-locality, in a quantum theory of gravity. We discuss how these ideas are realized in specific quantum gravity approaches. Turning then the problem around, we consider the emergence of continuum space and time from the collective behaviour of discrete, pre-geometric atoms of quantum space, and for understanding spacetime as a kind of "condensate", and we present the case for this emergence process being the result of a phase transition, dubbed "geometrogenesis". We discuss some conceptual issues of this scenario and of the idea of emergent spacetime in general. As a concrete example, we outline the GFT framework for quantum gravity, and illustrate a tentative procedure for the emergence of spacetime in this framework. Last, we re-examine the conceptual issues raised by the emergent spacetime scenario in light of this concrete example.