Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Purpose of review In the current review, we aim to highlight the evolving evidence on using diaphragm neurostimulation to develop lung and diaphragm protective mechanical ventilation. Recent findings Positive-pressure ventilation (PPV) causes stress and strain to the lungs which leads to ventilator-induced lung injury (VILI). In addition, PPV is frequently associated with sedatives that induce excessive diaphragm unloading which contributes to ventilator-induced diaphragmatic dysfunction (VIDD). The nonvolitional diaphragmatic contractions entrained by diaphragm neurostimulation generate negative pressure ventilation, which may be a beneficial alternative or complement to PPV. Although well established as a permanent treatment of central apnea syndromes, temporary diaphragm neurostimulation rapidly evolves to prevent and treat VILI and VIDD. Experimental and small clinical studies report comprehensive data showing that diaphragm neurostimulation has the potential to mitigate VIDD and to decrease the stress and strain applied to the lungs. Summary Scientific interest in temporary diaphragm neurostimulation has dramatically evolved in the last few years. Despite a solid physiological rationale and promising preliminary findings confirming a beneficial effect on the diaphragm and lungs, more studies and further technological advances will be needed to establish optimal standardized settings and lead to clinical implementation and improved outcomes.
Purpose of review In the current review, we aim to highlight the evolving evidence on using diaphragm neurostimulation to develop lung and diaphragm protective mechanical ventilation. Recent findings Positive-pressure ventilation (PPV) causes stress and strain to the lungs which leads to ventilator-induced lung injury (VILI). In addition, PPV is frequently associated with sedatives that induce excessive diaphragm unloading which contributes to ventilator-induced diaphragmatic dysfunction (VIDD). The nonvolitional diaphragmatic contractions entrained by diaphragm neurostimulation generate negative pressure ventilation, which may be a beneficial alternative or complement to PPV. Although well established as a permanent treatment of central apnea syndromes, temporary diaphragm neurostimulation rapidly evolves to prevent and treat VILI and VIDD. Experimental and small clinical studies report comprehensive data showing that diaphragm neurostimulation has the potential to mitigate VIDD and to decrease the stress and strain applied to the lungs. Summary Scientific interest in temporary diaphragm neurostimulation has dramatically evolved in the last few years. Despite a solid physiological rationale and promising preliminary findings confirming a beneficial effect on the diaphragm and lungs, more studies and further technological advances will be needed to establish optimal standardized settings and lead to clinical implementation and improved outcomes.
Assessing and treating respiratory muscle dysfunction is crucial for patients with both acute and chronic respiratory failure. Respiratory muscle dysfunction can contribute to the onset of respiratory failure and may also worsen due to interventions aimed at treatment. Evaluating respiratory muscle function is particularly valuable for diagnosing, phenotyping and assessing treatment efficacy in these patients. This review outlines established methods, such as measuring respiratory pressures, and explores novel techniques, including respiratory muscle neurophysiology assessments using electromyography and imaging with ultrasound.Additionally, we review various treatment strategies designed to support and alleviate the burden on overworked respiratory muscles or to enhance their capacity through training interventions. These strategies range from invasive and noninvasive mechanical ventilation approaches to specialised respiratory muscle training programmes. By summarising both established techniques and recent methodological advancements, this review aims to provide a comprehensive overview of the tools available in clinical practice for evaluating and treating respiratory muscle dysfunction. Our goal is to present a clear understanding of the current capabilities and limitations of these diagnostic and therapeutic approaches. Integrating advanced diagnostic methods and innovative treatment strategies should help improve patient management and outcomes. This comprehensive review serves as a resource for clinicians, equipping them with the necessary knowledge to effectively diagnose and treat respiratory muscle dysfunction in both acute and chronic respiratory failure scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.