“…Sun et al had studied the intelligent population evolution in-depth based on the analysis of particle swarm optimization algorithm, quantum theory was introduced into a PSO algorithm, quantum-behaved particle swarm optimization algorithm was proposed with a global search capability (Quantum-behaved Particle Swarm Optimization, QPSO) . Since the proposed PSO algorithm, it has the simple calculation program, and it is easy to implement, and there are less control parameters, etc., it caused research and attention of many scholars in related fields at home and abroad (Goh, Tan, Liu et al, 2010;Omranpour, Ebadzadeh, Shirt et al, 2012), but also it has been applied to some practical problems (Chen, Sun & Ding, 2008;Chai, Sun, Cai et al, 2009;Omkar, Khandelwal, Ananth et al, 2009). QPSO algorithm has only parameter (contraction expansion factor), Sun et al, used a fixed parameter control strategy , later Fang proposed increases evolutionary numbers, the linear or nonlinear decreasing parameter control method were used, the simulation results showed that good improvement effect are achieved in most of the test functions (Fang, 2008).…”