Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background Soil fertility decline due to nutrient mining coupled with low inorganic fertilizer usage is a major cause of low crop yields across sub-Saharan Africa. Recently, biochar potential to improve soil fertility has gained significant attention but there are limited studies on the use of biochar as an alternative to inorganic fertilizers. In this study, we determined the effect of maize stover biochar without inorganic fertilizers on soil chemical properties, growth and yield of tomatoes (Solanum lycopersicum L.). A field experiment was conducted in 2022 for two consecutive seasons in Northern Uganda. The experiment included five treatments; inorganic fertilizer (control), biochar applied at rates of 3.5, 6.9, 13.8 and 27.6 t ha−1. Results In this study, maize stover biochar improved all the soil chemical properties. Compared to the control, pH significantly increased by 27% in the 27.6 t ha−1 while total N increased by 35.6% in the 13.8 t ha−1. Although P was significantly low in the 3.5 t ha−1, 6.9 t ha−1 and 13.8 t ha−1, it increased by 3.9% in the 27.6 t ha−1. Exchangeable K was significantly increased by 42.7% and 56.7% in the 13.8 t ha−1 and 27.6 t ha−1 respectively. Exchangeable Ca and Mg were also higher in the biochar treatment than the control. Results also showed that plant height, shoot weight, and all yield parameters were significantly higher in the inorganic fertilizer treatment than in the 3.5, 6.9, and 13.8 t ha−1 treatments. Interestingly, maize stover biochar at 27. 6 t ha−1 increased fruit yield by 16.1% compared to the control suggesting it could be used as an alternative to inorganic fertilizer. Conclusions Maize stover biochar applied at 27.6 t ha−1 improved soil chemical properties especially pH, N, P and K promoting growth and yield of tomatoes. Therefore, maize stover biochar could be recommended as an alternative to expensive inorganic fertilizers for tomato production in Northern Uganda.
Background Soil fertility decline due to nutrient mining coupled with low inorganic fertilizer usage is a major cause of low crop yields across sub-Saharan Africa. Recently, biochar potential to improve soil fertility has gained significant attention but there are limited studies on the use of biochar as an alternative to inorganic fertilizers. In this study, we determined the effect of maize stover biochar without inorganic fertilizers on soil chemical properties, growth and yield of tomatoes (Solanum lycopersicum L.). A field experiment was conducted in 2022 for two consecutive seasons in Northern Uganda. The experiment included five treatments; inorganic fertilizer (control), biochar applied at rates of 3.5, 6.9, 13.8 and 27.6 t ha−1. Results In this study, maize stover biochar improved all the soil chemical properties. Compared to the control, pH significantly increased by 27% in the 27.6 t ha−1 while total N increased by 35.6% in the 13.8 t ha−1. Although P was significantly low in the 3.5 t ha−1, 6.9 t ha−1 and 13.8 t ha−1, it increased by 3.9% in the 27.6 t ha−1. Exchangeable K was significantly increased by 42.7% and 56.7% in the 13.8 t ha−1 and 27.6 t ha−1 respectively. Exchangeable Ca and Mg were also higher in the biochar treatment than the control. Results also showed that plant height, shoot weight, and all yield parameters were significantly higher in the inorganic fertilizer treatment than in the 3.5, 6.9, and 13.8 t ha−1 treatments. Interestingly, maize stover biochar at 27. 6 t ha−1 increased fruit yield by 16.1% compared to the control suggesting it could be used as an alternative to inorganic fertilizer. Conclusions Maize stover biochar applied at 27.6 t ha−1 improved soil chemical properties especially pH, N, P and K promoting growth and yield of tomatoes. Therefore, maize stover biochar could be recommended as an alternative to expensive inorganic fertilizers for tomato production in Northern Uganda.
Plant adaptive responses to environmental stresses occur with the participation of plant hormones and a network of signaling mediators. Among these, a growing attention has been paid over the recent years to gasotransmitters (GT). This term is used to define small gaseous molecules synthesized by living organisms that perform signaling functions. The main GT in plants are nitrogen monoxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S). The mechanisms of GT participation in the processes of plant adaptation to unfavorable environmental conditions have not yet been studied enough, which limits the use of GT in crop production. This review summarizes the latest data on GT synthesis in plants, the ability of GT to induce post-translational protein modifications in plants and to functionally interact with each other and with other signaling mediators. Particular attention is paid to the participation of GT in the regulation of antioxidant system, the state of cytoskeleton, and stomatal reactions of plants. These effects are important for stimulation by gasotransmitters the adaptation of plants to extreme temperatures, drought, and salinity. The possibilities of using GT donors in crop production were also considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.