Current methods of estimating the public health effects of emissions are computationally too expensive or do not fully address complex atmospheric processes, frequently limiting their applications to policy research. Using a reduced-form model derived from tagged chemical transport model (CTM) simulations, we present PM2.5 mortality costs per tonne of inorganic air pollutants with the 36 km × 36 km spatial resolution of source location in the United States, providing the most comprehensive set of such estimates comparable to CTM-based estimates. Our estimates vary by 2 orders of magnitude. Emission-weighted seasonal averages were estimated at $88,000-130,000/t PM2.5 (inert primary), $14,000-24,000/t SO2, $3,800-14,000/t NOx, and $23,000-66,000/t NH3. The aggregate social costs for year 2005 emissions were estimated at $1.0 trillion dollars. Compared to other studies, our estimates have similar magnitudes and spatial distributions for primary PM2.5 but substantially different spatial patterns for precursor species where secondary chemistry is important. For example, differences of more than a factor of 10 were found in many areas of Texas, New Mexico, and New England states for NOx and of California, Texas, and Maine for NH3. Our method allows for updates as emissions inventories and CTMs improve, enhancing the potential to link policy research to up-to-date atmospheric science.