A colored weak singlet scalar state with hypercharge 4/3 is one of the
possible candidates for the explanation of the unexpectedly large
forward-backward asymmetry in t tbar production as measured by the CDF and D0
experiments. We investigate the role of this state in a plethora of flavor
changing neutral current processes and precision observables of down-quarks and
charged leptons. Our analysis includes tree- and loop-level mediated
observables in the K and B systems, the charged lepton sector, as well as the Z
to b bbar decay width. We perform a global fit of the relevant scalar
couplings. This approach can explain the (g-2)_mu anomaly while tensions among
the CP violating observables in the quark sector, most notably the nonstandard
CP phase (and width difference) in the Bs system cannot be fully relaxed. The
results are interpreted in a class of grand unified models which allow for a
light colored scalar with a mass below 1TeV. We find that the renormalizable
SU(5) scenario is not compatible with our global fit, while in the SO(10) case
the viability requires the presence of both the 126- and 120-dimensional
representations.Comment: 26 pages, 7 figures; version as publishe