2022
DOI: 10.48550/arxiv.2203.08080
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Implicit Feature Decoupling with Depthwise Quantization

Abstract: Quantization has been applied to multiple domains in Deep Neural Networks (DNNs). We propose Depthwise Quantization (DQ) where quantization is applied to a decomposed sub-tensor along the feature axis of weak statistical dependence. The feature decomposition leads to an exponential increase in representation capacity with a linear increase in memory and parameter cost. In addition, DQ can be directly applied to existing encoder-decoder frameworks without modification of the DNN architecture. We use DQ in the c… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 29 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?