Matrices constructed from a parameterized multivariate polynomial system are analyzed to ensure that such a matrix contains a condition for the polynomial system to have common solutions irrespective of whether its parameters are specialized or not. Such matrices include resultant matrices constructed using well-known methods for computing resultants over projective, toric and affine varieties. Conditions on these matrices are identified under which the determinant of a maximal minor of such a matrix is a nontrivial multiple of the resultant over a given variety. This condition on matrices allows a generalization of a linear algebra construction, called rank submatrix, for extracting resultants from singular resultant matrices, as proposed by Kapur, Saxena and Yang in ISSAC'94. This construction has been found crucial for computing resultants of non-generic, specialized multivariate polynomial systems that arise in practical applications. The new condition makes the rank submatrix construction based on maximal minor more widely applicable by not requiring that the singular resultant matrix have a column independent of the remaining columns. Unlike perturbation methods, which require introducing a new variable, rank submatrix construction is faster and effective. Properties and conditions on symbolic matrices constructed from a polynomial system are discussed so that the resultant can be computed as a factor of the determinant of a maximal non-singular submatrix.