Unlike stratospheric ozone (O3), which is beneficial for Earth due to its capacity to screen the surface from solar ultraviolet radiation, tropospheric ozone poses a number of health and environmental issues. It has multiple effects that drive anthropogenic climate change, ranging from pure radiative forcing to a reduction of carbon sequestration potential in plants. In the central Mediterranean, which itself represents a hotspot for climate studies, multi-year data on surface ozone were analyzed at the Lamezia Terme (LMT) WMO/GAW coastal observation site, located in Calabria, Southern Italy. The site is characterized by a local wind circulation pattern that results in a clear differentiation between Western-seaside winds, which are normally depleted in pollutants and GHGs, and Northeastern-continental winds, which are enriched in these compounds. This study is the first detailed attempt at evaluating ozone concentrations at LMT and their correlations with meteorological parameters, providing new insights into the source of locally observed tropospheric ozone mole fractions. This research shows that surface ozone daily and seasonal patterns at LMT are “reversed” compared to the patterns observed by comparable studies applied to other parameters and compounds, thus confirming the general complexity of anthropogenic emissions into the atmosphere and their numerous effects on atmospheric chemistry. These observations could contribute to the monitoring and verification of new regulations and policies on environmental protection, cultural heritage preservation, and the mitigation of human health hazards in Calabria.