BackgroundArticular cartilage defects are limited to their regenerative potential in human adults. Our current study evaluates tissue regeneration in a surgically induced empty defect site with hyaluronan thiomer as a provisional scaffold in a gel/matrix combination without cells on rabbit models to restore tissue formation.MethodsAn osteochondral defect of 4 mm in diameter and 5 mm in depth was induced by mechanical drilling in the femoral center of the trochlea in 18 New Zealand White rabbits. Previously evaluated from an in vitro study hyaluronan thiomer matrix, and a hyaluronan thiomer gel was used to treat the defect. As a control, the defect was left untreated. During the whole study, rabbits were clinically examined and after 4 (n = 3) or 12 (n = 3) weeks, the rabbits were sacrificed. Joints were evaluated macroscopically (Brittberg score) and by histology (O’Driscoll score). Synovial cells from the synovial fluid smear were histopathologically evaluated.ResultsThe healing of the defects varied intra-group wise at the first observation period. After 12 weeks the results concerning the cartilage repair score were inhomogeneous within each group, while the macroscopic analysis was more homogenous. In the synovial fluid smear, the mean score of infiltrated synovial and non-synovial cells was slightly increased after 4 weeks and slightly decreased after 12 weeks in both the treatment groups in comparison to the untreated control.ConclusionsTaken together with results from the in vivo study indicated that implantation of hyaluronan thiomer as a combination of gel and matrix might enhance articular cartilage regeneration in an empty defect. Despite their benefits, the intrinsic healing capacity of New Zealand rabbits is a limitation for comparative test subject in pre-clinical models of cartilage defects.