Novel, bioerodible, thermosensitive poly(NIPAAm-co-dimethyl-γ-butyrolactone), with hydrolysisdependent thermosensitivity, were synthesized by radical polymerization with varying dimethyl-γ-butyrolactone content and the properties of the copolymers were characterized using Differential Scanning Calorimetry (DSC), High Performance Liquid Chromatography (HPLC) in conjunction with Static Light Scattering, Fourier Transformed Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR) and acid titration. The lower critical solution temperature (LCST) of the copolymers decreased with increasing dimethyl-γ-butyrolactone content, but then increased after ring-opening hydrolysis of the dimethyl-γ-butyrolactone side group. FTIR and NMR spectra showed the copolymerization of these two monomers and the hydrolysis-dependent ring-opening of the dimethyl-γ-butyrolactone side group. It was also found that there are no low-molecular-weight byproducts but rather dissolution of the polymer chains at 37°C during the time frame of application. Models of the kinetics suggest that the hydrolysis reaction is self-catalytic due to an increase in hydrophilicity, and thus accessible water concentration, caused by ring-opening of the dimethyl-γ-butyrolactone.