Approved for public release; distribution unlimited.
ii
REPORT DOCUMENTATION PAGEForm Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
REPORT DATE (DD-MM-YYYY)
March 20102. REPORT TYPE
ARL-TR-5134
SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
SPONSOR/MONITOR'S REPORT NUMBER(S)
DISTRIBUTION/AVAILABILITY STATEMENTApproved for public release; distribution unlimited.
SUPPLEMENTARY NOTES
ABSTRACTMolecular dynamics simulations are used to simulate the kinetic reaction of nickel (Ni) and aluminum (Al) particles at the nanometer scale. The effect of particle size on reaction time and temperature for separate nanoparticles is considered as a model system for a powder metallurgy system. Coated nanoparticles in the form of Ni-coated Al nanoparticles and Al-coated Ni nanoparticles are also analyzed as a model for nanoparticles embedded within a matrix. The differences in melting temperature and phase change behavior, e.g., the volumetric expansion of Al between Al and Ni is expected to produce differing results for the coated nanoparticle systems. For instance, the volumetric expansion of Al upon melting is expected to produce large tensile stresses and possibly rupture in the Ni shell for Ni-coated Al. Simulation results showed that the sintering time for separate and coated nanoparticles was nearly linearly dependent upon the number of atoms or volume of the sintering nanoparticles. We also found that nanoparticle size and surface energy was an important factor in determining the adiabatic reaction temperature for both systems at nanoparticle sizes of less than 10 nm in diameter. iii
SUBJECT TERMS