Escherichia coli cells were suspended in phosphate-buffered saline solutions (pH 7.4) at physiological (0.9 %) and hyperosmotic (3.5, 5.0, and 10.0 %) concentrations of sodium chloride (NaCl) and stored at 5, 10, 15, 20, and 25 °C up to 48 d. During storage at 5 and 10 °C, viable cell counts decreased approximately from 9 log CFU/ml to 6-7 log CFU/ml, and NaCl showed slight protective effect on the decrease. When stored at 15, 20, and 25 °C, the counts decreased with increases in NaCl concentration and/or storage temperature. The cells in 10.0 % NaCl suspension became nondetectable after storage at 25 °C for 28 d. Under some storage conditions (NaCl ≤ 5 %, 20 and 25 °C) , the counts approached constant values, indicating possible adaptation to NaCl. Injured cells were observed at 5.0 and 10.0 % NaCl. However, recovery was observed only at 5.0 % NaCl during storage at 20 °C. In addition, more cells were detected on nonselective medium when incubated at 37 °C than at 25 °C. Higher hyperosmotic NaCl solutions at higher storage temperatures reduced more viable cells of E. coli.