Corynebacterium diphtheriae is the causative agent of diphtheria. In 2003, the complete genomic nucleotide sequence of an isolate (NCTC13129) from a large outbreak in the former Soviet Union was published, in which the presence of 13 putative pathogenicity islands (PAIs) was demonstrated. In contrast, earlier work on diphtheria mainly employed the C7(؊) strain for genetic analysis; therefore, current knowledge of the molecular genetics of the bacterium is limited to that strain. However, genomic information on the NCTC13129 strain has scarcely been compared to strain C7(؊). Another important C. diphtheriae strain is Park-Williams no. 8 (PW8), which has been the only major strain used in toxoid vaccine production and for which genomic information also is not available. Here, we show by comparative genomic hybridization that at least 37 regions from the reference genome, including 11 of the 13 PAIs, are considered to be absent in the C7(؊) genome. Despite this, the C7(؊) strain still retained signs of pathogenicity, showing a degree of adhesion to Detroit 562 cells, as well as the formation of and persistence in abscesses in animal skin comparable to that of the NCTC13129 strain. In contrast, the PW8 strain, suggested to lack 14 genomic regions, including 3 PAIs, exhibited more reduced signs of pathogenicity. These results, together with great diversity in the presence of the 37 genomic regions among various C. diphtheriae strains shown by PCR analyses, suggest great heterogeneity of this pathogen, not only in genome organization, but also in pathogenicity.