Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Since in vitro studies and a preliminary clinical report suggested the efficacy of chloroquine for COVID-19-associated pneumonia, there is increasing interest in this old antimalarial drug. In this article, we discuss the pharmacokinetics and safety of chloroquine that should be considered in light of use in SARS-CoV-2 infections. Chloroquine is well absorbed and distributes extensively resulting in a large volume of distribution with an apparent and terminal half-life of 1.6 days and 2 weeks, respectively. Chloroquine is metabolized by cytochrome P450 and renal clearance is responsible for one third of total clearance. The lack of reliable information on target concentrations or doses for COVID-19 implies that for both adults and children, doses that proved effective and safe in malaria should be considered, such as 'loading doses' in adults (30 mg/kg over 48 h) and children (70 mg/kg over 5 days), which reported good tolerability. Here, plasma concentrations were < 2.5 μmol/L, which is associated with (minor) toxicity. While the influence of renal dysfunction, critical illness, or obesity seems small, in critically ill patients, reduced absorption may be anticipated. Clinical experience has shown that chloroquine has a narrow safety margin, as three times the adult therapeutic dosage for malaria can be lethal when given as a single dose. Although infrequent, poisoning in children is extremely dangerous where one to two tablets can potentially be fatal. In conclusion, the pharmacokinetic and safety properties of chloroquine suggest that chloroquine can be used safely for an acute virus infection, under corrected QT monitoring, but also that the safety margin is small, particularly in children.
Since in vitro studies and a preliminary clinical report suggested the efficacy of chloroquine for COVID-19-associated pneumonia, there is increasing interest in this old antimalarial drug. In this article, we discuss the pharmacokinetics and safety of chloroquine that should be considered in light of use in SARS-CoV-2 infections. Chloroquine is well absorbed and distributes extensively resulting in a large volume of distribution with an apparent and terminal half-life of 1.6 days and 2 weeks, respectively. Chloroquine is metabolized by cytochrome P450 and renal clearance is responsible for one third of total clearance. The lack of reliable information on target concentrations or doses for COVID-19 implies that for both adults and children, doses that proved effective and safe in malaria should be considered, such as 'loading doses' in adults (30 mg/kg over 48 h) and children (70 mg/kg over 5 days), which reported good tolerability. Here, plasma concentrations were < 2.5 μmol/L, which is associated with (minor) toxicity. While the influence of renal dysfunction, critical illness, or obesity seems small, in critically ill patients, reduced absorption may be anticipated. Clinical experience has shown that chloroquine has a narrow safety margin, as three times the adult therapeutic dosage for malaria can be lethal when given as a single dose. Although infrequent, poisoning in children is extremely dangerous where one to two tablets can potentially be fatal. In conclusion, the pharmacokinetic and safety properties of chloroquine suggest that chloroquine can be used safely for an acute virus infection, under corrected QT monitoring, but also that the safety margin is small, particularly in children.
Introduction:Malaria is an endemic infection in tropical circles. It can be transmitted from mosquitoes bite, but exceptional cases have been attributed to multiorgan transplantation.Case report: This is a 34-year-old woman who received a heart transplant for finalstage dilated cardiomyopathy. Over the hospitalization, she developed fever, cephalalgia, and tonic-clonic seizures with MRI findings compatible with posterior reversible encephalopathy. A thick blood smear revealed hemoparasitic forms of Plasmodium vivax. Afterward, malaria was also diagnosed in recipients of one kidney and liver of the same organ donor. First-line treatment with artesunate was prescribed for 3 days and chloroquine with primaquine thereafter for 14 days. The patient was discharged and returned to the emergency department 5 days later, complaining of gastrointestinal symptoms and developed multiorgan failure that led to death. Conclusion:We report a case of malaria transmission through heart transplantation.Despite adequate and supervised treatment, it can be related to a fatal outcome.Malaria screening in organ donors should be considered in regions where endemicity can lead to rare cases of transmission by transplantation.
Malaria remains one of the most prevalent infectious diseases globally. Despite targets set out by the WHO in 2015, there has been a rise in the number of cases since 2019 as an indirect effect of the COVID-19 pandemic.Cardiac complications are very rarely witnessed with severe malaria. Of the cardiac sequelae, myocarditis is one of the most frequently observed with a handful of case reports in the literature. We report a case of a man in his 50s who developed myocarditis while being managed for severePlasmodium falciparummalaria in an intensive care unit in the UK and review the literature relevant to this case. This is the second reported case of this condition in the UK.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.