In this paper, variable stiffness damped absorbers are used to isolate the substructures of Euler-Bernoulli beam, modelled as lumped masses, from vibrations. The novel algorithm is developed that can be used to determine the required absorber masses and resonance frequencies to impose nodes at selected locations on beam with the constraint of vibration amplitude of absorber mass. Numerical simulations are performed to show the effectiveness of the proposed algorithm. Experimental test is conducted on a cantilever beam with two absorbers to verify the numerical results.