Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are oppositely imprinted autism-spectrum disorders with known genetic bases, but complex epigenetic mechanisms underlie their pathogenesis. The PWS/AS locus on 15q11-q13 is regulated by an imprinting control region that is maternally methylated and silenced. The PWS imprinting control region is the promoter for a one megabase paternal transcript encoding the ubiquitous protein-coding Snrpn gene and multiple neuron-specific noncoding RNAs, including the PWS-related Snord116 repetitive locus of small nucleolar RNAs and host genes, and the antisense transcript to AScausing ubiquitin ligase encoding Ube3a (Ube3a-ATS). Neuronspecific transcriptional progression through Ube3a-ATS correlates with paternal Ube3a silencing and chromatin decondensation. Interestingly, topoisomerase inhibitors, including topotecan, were recently identified in an unbiased drug screen for compounds that could reverse the silent paternal allele of Ube3a in neurons, but the mechanism of topotecan action on the PWS/AS locus is unknown. Here, we demonstrate that topotecan treatment stabilizes the formation of RNA:DNA hybrids (R loops) at G-skewed repeat elements within paternal Snord116, corresponding to increased chromatin decondensation and inhibition of Ube3a-ATS expression. Neural precursor cells from paternal Snord116 deletion mice exhibit increased Ube3a-ATS levels in differentiated neurons and show a reduced effect of topotecan compared with wild-type neurons. These results demonstrate that the AS candidate drug topotecan acts predominantly through stabilizing R loops and chromatin decondensation at the paternally expressed PWS Snord116 locus. Our study holds promise for targeted therapies to the Snord116 locus for both AS and PWS.rader-Willi syndrome (PWS) and Angelman syndrome (AS) are imprinted neurodevelopmental disorders caused by oppositely inherited deficiencies of chromosome 15q11-q13. AS and PWS are both characterized by hypotonia at birth, disordered sleep, autistic features, and intellectual disabilities, but the diseases differentiate into phenotypically distinct syndromes in early childhood (1, 2). Seizures, ataxia, and inappropriate laughter characterize AS, whereas hyperphagia leading to obesity and obsessive-compulsive behaviors characterize PWS. Maternal mutations in UBE3A/Ube3a in humans and mice have identified the loss of function of this ubiquitin E3 ligase encoding gene as the cause of AS (3, 4). For PWS, small deletions of the HBII-85/ SNORD116 locus (5-7) and two mouse models of Snord116 deletions (8, 9) have identified the minimal causative deficiency to be the paternally expressed, highly repetitive, long noncoding RNA (lncRNA) that is processed into multiple small nucleolar RNAs (snoRNAs) and spliced nuclear retained host genes (116HG and 115HG) (10,11).A recent drug screen discovered that topoisomerase inhibitors, including topotecan, reduce Ube3a-ATS by an unknown mechanism to reverse the silencing of paternal Ube3a in mouse neurons and brain (12). Topotec...