Improve neural representations with general exponential activation function for high-speed flows
Ge Jin,
Deyou Wang,
Pengfei Si
et al.
Abstract:Characterizing flow fields with neural networks has witnessed a considerable surge in recent years. However, the efficacy of these techniques is typically constrained when applied to high-speed compressible flows, due to the susceptibility of nonphysical oscillations near shock waves. In this work, we focus on a crucial fundamental component of neural networks, the activation functions, to improve the physics-informed neural representations of high-speed compressible flows. We present a novel activation functi… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.