The principal Hugoniot of carbon, initially diamond, was measured from 3 to 80 TPa (30 to 800 million atmospheres), the highest pressure ever achieved, using radiography of spherically-converging shocks. The shocks were generated by ablation of a plastic coating by soft x-rays in a laser-heated hohlraum at the National Ignition Facility (NIF). Experiments were performed with low and high drive powers, spanning different but overlapping pressure ranges. The radius-time history of the shock, and the profile of mass density behind, were determined by profile-matching from a timeresolved x-ray radiograph across the diameter of the sphere. Above ∼50 TPa, the heating induced by the shock was great enough to ionize a significant fraction of K-shell electrons, reducing the opacity to the 10.2 keV probe x-rays. The opacity and mass density were deduced simultaneously using the constraint that the total mass of the sample was constant. The Hugoniot and opacity were consistent with density functional theory calculations of the electronic states and equation of state (EOS), and varied significantly from theoretical Hugoniots based on Thomas-Fermi theory. Theoretical models used to predict the compressibility of diamond ablator experiments at the NIF, producing the highest neutron yields so far from inertial confinement fusion experiments, are qualitatively consistent with our EOS measurements but appear to overpredict the compressibility slightly. These measurements help to evaluate theoretical techniques and constrain wide-range EOS models applicable to white dwarf stars, which are the ultimate evolutionary form of at least 97% of stars in the galaxy.