2023
DOI: 10.1063/5.0153970
|View full text |Cite
|
Sign up to set email alerts
|

Improved automatic kernel construction for Gaussian process regression in small sample learning for predicting lift body aerodynamic performance

Abstract: A Gaussian process regression (GPR) model based on an improved automatic kernel construction (AKC) algorithm using beam search is proposed to establish a surrogate model between lift body shape parameters and aerodynamic coefficients with various training sets sizes. The precision of our proposed surrogate model is assessed through tenfold cross-validation. The improved AKC-GPR algorithm, polynomial regression, and support vector regression (SVR) are employed to construct the regression model. The interpolatio… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
references
References 34 publications
0
0
0
Order By: Relevance