Improved automatic segmentation of brain metastasis gross tumor volume in computed tomography images for radiotherapy: a position attention module for U-Net architecture
Yiren Wang,
Yiheng Hu,
Shouying Chen
et al.
Abstract:Background
Brain metastases present significant challenges in radiotherapy due to the need for precise tumor delineation. Traditional methods often lack the efficiency and accuracy required for optimal treatment planning. This paper proposes an improved U-Net model that uses a position attention module (PAM) for automated segmentation of gross tumor volumes (GTVs) in computed tomography (CT) simulation images of patients with brain metastases to improve the efficiency and accuracy of radiotherapy … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.