We study progression-free sets in the abelian groups $$G=({{\mathbb {Z}}}_m^n,+)$$
G
=
(
Z
m
n
,
+
)
. Let $$r_k({{\mathbb {Z}}}_m^n)$$
r
k
(
Z
m
n
)
denote the maximal size of a set $$S \subset {{\mathbb {Z}}}_m^n$$
S
⊂
Z
m
n
that does not contain a proper arithmetic progression of length k. We give lower bound constructions, which e.g. include that $$r_3({{\mathbb {Z}}}_m^n) \ge C_m \frac{((m+2)/2)^n}{\sqrt{n}}$$
r
3
(
Z
m
n
)
≥
C
m
(
(
m
+
2
)
/
2
)
n
n
, when m is even. When $$m=4$$
m
=
4
this is of order at least $$3^n/\sqrt{n}\gg \vert G \vert ^{0.7924}$$
3
n
/
n
≫
|
G
|
0.7924
. Moreover, if the progression-free set $$S\subset {{\mathbb {Z}}}_4^n$$
S
⊂
Z
4
n
satisfies a technical condition, which dominates the problem at least in low dimension, then $$|S|\le 3^n$$
|
S
|
≤
3
n
holds. We present a number of new methods which cover lower bounds for several infinite families of parameters m, k, n, which includes for example: $$r_6({{\mathbb {Z}}}_{125}^n) \ge (85-o(1))^n$$
r
6
(
Z
125
n
)
≥
(
85
-
o
(
1
)
)
n
. For $$r_3({{\mathbb {Z}}}_4^n)$$
r
3
(
Z
4
n
)
we determine the exact values, when $$n \le 5$$
n
≤
5
, e.g. $$r_3({{\mathbb {Z}}}_4^5)=124$$
r
3
(
Z
4
5
)
=
124
, and for $$r_4({{\mathbb {Z}}}_4^n)$$
r
4
(
Z
4
n
)
we determine the exact values, when $$n \le 4$$
n
≤
4
, e.g. $$r_4({{\mathbb {Z}}}_4^4)=128$$
r
4
(
Z
4
4
)
=
128
. With regard to affine caps, i.e. sets without 3 points on a line, the new methods asymptotically improve the known lower bounds, when $$m=4$$
m
=
4
and $$m=5$$
m
=
5
: in $${{\mathbb {Z}}}_4^n$$
Z
4
n
from $$2.519^n$$
2
.
519
n
to $$(3-o(1))^n$$
(
3
-
o
(
1
)
)
n
, and when $$m=5$$
m
=
5
from $$2.942^n$$
2
.
942
n
to $$(3-o(1))^n$$
(
3
-
o
(
1
)
)
n
. This last improvement modulo 5 appears to be the first asymptotic improvement of any cap in AG(n, m), when $$m \ge 5$$
m
≥
5
over a tensor lifting from dimension 6 (see Edel, in Des Codes Crytogr 31:5–14, 2004).