Currently, power quality is a major issue for all sorts of customers. End users of the electricity service in industrial, commercial and residential sectors have nonlinear loads or loads that are sensitive to disturbances in the electric power supply. In this context, this paper presents a study on four different control strategies for the application of synchronous compensator based on a doubly-fed induction generator (DFIG). The mathematical modeling developed to support the proposal of this article is validated through computational simulations and experimental results. This work contains strong arguments that support the idea that the proposed synchronous compensator can be employed to cancel oscillations caused by imbalances in the grid, and can furthermore inject or absorb reactive and active power without the characteristic oscillations that arise when negative sequence components are present in the system.