2016
DOI: 10.1016/j.neucom.2016.08.005
|View full text |Cite
|
Sign up to set email alerts
|

Improved deep belief networks and multi-feature fusion for leaf identification

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
29
0
2

Year Published

2017
2017
2022
2022

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 50 publications
(31 citation statements)
references
References 25 publications
0
29
0
2
Order By: Relevance
“…x' adalah nilai desimal yang merupakan konversi dari barisan bilagan biner berdasarkan tetangga pixel x, y adalah pixel tetangga x dan N adalah jumlah pixel tetangga x. Setelah semua pixel pada citra gray level diinisialisasi dengan nilai baru, Fitur LBP didapatkan dari nilai histogram pada citra gray level yang telah ditransformasi ke dalam bentuk 1dimensi (Liu & Kan, 2016).…”
Section: Nounclassified
See 1 more Smart Citation
“…x' adalah nilai desimal yang merupakan konversi dari barisan bilagan biner berdasarkan tetangga pixel x, y adalah pixel tetangga x dan N adalah jumlah pixel tetangga x. Setelah semua pixel pada citra gray level diinisialisasi dengan nilai baru, Fitur LBP didapatkan dari nilai histogram pada citra gray level yang telah ditransformasi ke dalam bentuk 1dimensi (Liu & Kan, 2016).…”
Section: Nounclassified
“…Gray level co-occurence matrix (GLCM) adalah metode ekstrasi fitur berdasarkan matrik tabulasi dari setiap nilai pixel pada citra gray scale (Liu & Kan, 2016). Nilai fitur yang dapat diperoleh dari GLCM adalah contrast, homogeneity, energy dan correlation.…”
Section: Gray Level Co-occurence Matrix (Glcm)unclassified
“…Other researches had used a combination of geometric and textural, allowing them to use dried, wet or even misshapen leaves [12]. Some author combine both textural information and shape features to identify leaves [13,14].…”
Section: State Of the Artmentioning
confidence: 99%
“…However, a recurring problem in the leaves of plants is that the chromaticity in the leaves is not static, it is variable with respect to time and commonly with respect to other factors. Other authors consider in addition to chromaticity and form, the texture of the leaf [16] or use combinations of descriptors to improve the classification performance [13,14].…”
Section: State Of the Artmentioning
confidence: 99%
“…The extracted shape descriptor is invariant to rotation, translation, scale, and start point of the edge centroid distance sequences. Liu and Kan [ 10 ] extracted a lot of texture and shape features for leaf classification, including Gabor filters, local binary patterns, Hu moment invariants, gray level cooccurrence matrices, and Fourier descriptors and applied deep belief networks with dropout to classify plant species. Vijayalakshmi and Mohan [ 11 ] extracted gray level cooccurrence matrix (GLCM) and local binary pattern (LBP) features for leaf classification.…”
Section: Introductionmentioning
confidence: 99%