The classification of cell types plays an essential role in monitoring the growth of cancer cells. One of the methods to determine the cancer type is to analyze the pap-smear images manually. Nevertheless, the manual analysis of pap-smear images by the expert has several limitations, such as time-consuming and prone to misdiagnosis. For reducing the risks, it requires the automatic classification of cell types based on pap-smear images. This study utilizes the convolutional neural network (CNN) architectures to automatically classify the cell type into two-class categories (normal/abnormal) based on three features. These features, such as the local binary pattern, gray level co-occurrence matrix, and shape features, are extracted from pap-smear images. This study shows the performance of CNN achieved the maximum accuracy of 99.98%, 100.0%, 99.78% in training, validation, and testing data. Our approach also outperforms the performance of the baseline methods. Keywords : CNN, Classification, Cell, Neural Network, Pap-smear