The purpose of this study was to evaluate the added value of the soft tissue image obtained by the one-shot dual-energy subtraction (DES) method using a flat-panel detector compared with the standard image alone in distinguishing calcified from non-calcified nodules on chest radiographs. We evaluated 155 nodules (48 calcified and 107 non-calcified) in 139 patients. Five radiologists (readers 1 − 5) with 26, 14, 8, 6 and 3 years of experience, respectively, evaluated whether the nodules were calcified using chest radiography. CT was used as the gold standard of calcification and non-calcification. Accuracy and area under the receiver operating characteristic curve (AUC) were compared between analyses with and without soft tissue images. The misdiagnosis ratio (false positive plus false negative ratios) when nodules and bones overlapped was also examined. The accuracy of all radiologists increased after adding soft tissue images (readers 1 − 5: 89.7% vs. 92.3% [P = 0.206], 83.2% vs. 87.7% [P = 0.178], 79.4% vs. 92.3% [P < 0.001], 77.4% vs. 87.1% [P = 0.007], and 63.2% vs. 83.2% [P < 0.001], respectively). AUCs for all the readers improved, except for reader 2 (readers 1 − 5: 0.927 vs. 0.937 [P = 0.495], 0.853 vs. 0.834 [P = 0.624], 0.825 vs. 0.878 [P = 0.151], 0.808 vs. 0.896 [P < 0.001], and 0.694 vs. 0.846 [P < 0.001], respectively). The misdiagnosis ratio for nodules that overlapped with the bone decreased after adding soft tissue images in all readers (11.5% vs. 7.6% [P = 0.096], 17.6% vs. 12.2% [P = 0.144], 21.4% vs. 7.6% [P < 0.001], 22.1% vs. 14.5% [P = 0.050] and 35.9% vs. 16.0% [P < 0.001], respectively), particularly that of readers 3 − 5. In conclusion, the soft tissue images obtained using one-shot DES with a flat-panel detector have added value in distinguishing calcified from non-calcified nodules on chest radiographs, especially for less experienced radiologists.