2019
DOI: 10.1007/s10854-019-02189-w
|View full text |Cite
|
Sign up to set email alerts
|

Improved dielectric properties and thermal conductivity of PVDF composites filled with core–shell structured Cu@CuO particles

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
19
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
9

Relationship

3
6

Authors

Journals

citations
Cited by 41 publications
(19 citation statements)
references
References 37 publications
0
19
0
Order By: Relevance
“…The method of adding fillers is a fast way to improve the thermal conductivity of polymers. Metal materials (such as copper powder [ 7 , 8 , 9 ], silver powder [ 10 , 11 ], metal sheet and wire [ 12 , 13 , 14 ]), carbon materials (such as carbon fiber (CF) [ 15 , 16 , 17 ], graphene material [ 18 , 19 ], graphite material [ 20 , 21 ], carbon nanotubes [ 22 , 23 ], carbon black [ 24 , 25 ]), inorganic fillers (such as aluminum nitride [ 26 , 27 ], boron nitride [ 28 , 29 , 30 ], silicon nitride [ 31 , 32 ], silicon carbide [ 33 ], alumina [ 34 , 35 ]) and other high thermal conductivity fillers are often used to improve the thermal conductivity of polymers. When the particulate filler content is small, it is difficult to significantly improve the thermal conductivity of the matrix.…”
Section: Introductionmentioning
confidence: 99%
“…The method of adding fillers is a fast way to improve the thermal conductivity of polymers. Metal materials (such as copper powder [ 7 , 8 , 9 ], silver powder [ 10 , 11 ], metal sheet and wire [ 12 , 13 , 14 ]), carbon materials (such as carbon fiber (CF) [ 15 , 16 , 17 ], graphene material [ 18 , 19 ], graphite material [ 20 , 21 ], carbon nanotubes [ 22 , 23 ], carbon black [ 24 , 25 ]), inorganic fillers (such as aluminum nitride [ 26 , 27 ], boron nitride [ 28 , 29 , 30 ], silicon nitride [ 31 , 32 ], silicon carbide [ 33 ], alumina [ 34 , 35 ]) and other high thermal conductivity fillers are often used to improve the thermal conductivity of polymers. When the particulate filler content is small, it is difficult to significantly improve the thermal conductivity of the matrix.…”
Section: Introductionmentioning
confidence: 99%
“…The conduction loss factor of polymer composites is calculated by the eq where σ dc and f are the DC conductivity and frequency, respectively …”
Section: Resultsmentioning
confidence: 99%
“…The increase in dielectric constant can be ascribed to the Maxwell-Wagner-Sillars effect, indicating that interfacial polarization can occur in heterogeneous phases with different electrical conductivities. 26 Moreover, the decrease in dielectric constant with increasing frequency is attributed to the dipolar polarization of the groups in the composites, and the interface polarization between fillers and PA12 matrix cannot keep up with the increase in frequency. 27 Meanwhile, Figure 7B illustrates the dielectric loss value of PA12 composites.…”
Section: Dielectric Properties Of Pa12 Compositesmentioning
confidence: 99%