Simvastatin is an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, which catalyzes the conversion of HMG-CoA to mevalonate, an early and rate-limiting step in the biosynthesis of cholesterol. Simvastatin has good permeability, but it also has low solubility (BCS class II), which reduces its bioavailability. To overcome this problem, a solid dispersion is formed using a spray-dryer with polymeric material carrier to potentially enhance the dissolution rate and extend drug absorption. As carriers for solid dispersion, Gelucire ® 44/14 and Gelucire ® 50/13 are semisolid excipients that greatly improve the bioavailability of poorly-soluble drugs. To avoid any toxic effects of an organic solvent, we used aqueous medium to melt Tween ® 80 and distilled water. The structural behaviors of the raw materials and the solid dispersion were analyzed by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM). The DSC and PXRD data indicated that the crystalline structure of simvastatin was transformed to an amorphous structure through solid dispersion. Then, solid dispersion-based tablets containing 20 mg simvastatin were prepared with excipients. Dissolution tests were performed in distilled water and artificial intestinal fluid using the USP paddle II method. Compared with that of the commercial tablet (Zocor ® 20 mg), the release of simvastatin from solid dispersion based-tablet was more efficient. Although the stability study is not complete, this solid dispersion system is expected to deliver poorly water-soluble drugs with enhanced bioavailability and less toxicity.