Improved drought forecasting in Kazakhstan using machine and deep learning: a non-contiguous drought analysis approach
Renata Sadrtdinova,
Gerald Augusto Corzo Perez,
Dimitri P. Solomatine
Abstract:Kazakhstan is recently experiencing an increase in drought trends. However, low-capacity probabilistic drought forecasts and poor dissemination have led to a drought crisis in 2021 that resulted in the loss of thousands of livestock. To improve drought forecasting accuracy, this study applies Machine Learning and Deep Learning (ML and DL) algorithms to capture the sequences of drought events using a non-contiguous drought analysis (NCDA). Precipitation, 2-m temperature, runoff, solar radiation, relative humidi… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.