The evaluation of typhoon disaster risk is a widely discussed global topic. Currently, the index system method has become a common approach for the evaluation of typhoon disaster risk. However, the indices within the system are calculated independently, and subjective human factors significantly influence the assignment of index weights. The existing studies lack purely quantitative assessment methods, which makes the studies less precise and more difficult for other researchers to replicate. To bridge this gap, this study employs emergy analysis methods based on thermodynamics to develop a typhoon disaster risk evaluation index system for China’s coastal zone. Without the interference of weights and other human factors, the system contains various quantitative indices, including aggregate impelling energy, typhoon intensity emergy, adaptability emergy, the vulnerability index, and the integrated typhoon hazard index. Subsequently, these indices and socio-economic data were spatialized, and the evaluation of typhoon disaster risk was conducted at the city grid level in the coastal zone of China. The findings reveal that the high-risk areas for typhoon disasters in China are concentrated in prefecture-level cities along the southeast coast. The typhoon disaster risk index is higher in the southern region compared to the northern region, with a decreasing trend in the distribution of the integrated typhoon hazard index from coastal to inland areas. The aim of this study is to use a new quantitative evaluation method (emergy) to evaluate typhoon disasters. It also serves as a theoretical foundation and technical support for national and local governments in the formulation of policies for disaster prevention and reduction.